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Abstract Weeks 3–6 averaged winter North Atlantic Oscillation (NAO) predictive skill in a state‐
of‐the‐art coupled climate prediction system is attributed to two principle sources: upper and lower
boundary conditions linked to the stratosphere and El Niño‐Southern Oscillation (ENSO), respectively.
A 20‐member ensemble of 45‐day reforecasts over 1999–2015 is utilized, together with uninitialized
simulations with the atmospheric component of the prediction system forced with observed radiative
forcing and lower boundary conditions. NAO forecast skill for lead times out to 6 weeks is higher
following extreme stratospheric polar vortex conditions (weak and strong vortex events) compared to
neutral states. Enhanced weeks 3–6 NAO predictive skill for weak vortex events results primarily from
stratospheric downward coupling to the troposphere, while enhanced skill for strong vortex events can be
partly attributed to lower boundary forcing related to the ENSO phenomenon. Implications for forecast
system development and improvement are discussed.

Plain Language Summary Winter climate over Europe and eastern North America is
significantly affected by variability of the North Atlantic Oscillation (NAO). In this study, we quantify the
NAO predictive skill for lead times of 3–6 weeks and attribute it to two main sources: the stratosphere and
the El Niño‐Southern Oscillation (ENSO) phenomenon. This is done by contrasting ensembles of 45‐day
reforecasts over 1999–2015 with the corresponding uninitialized atmosphere model simulations forced with
observed radiative forcing, sea‐surface temperature, and sea ice conditions. We find that the model is able to
better predict the NAO up to 3 weeks following extreme weak or strong states of the stratospheric polar
vortex compared to stratospheric neutral vortex states. Enhanced weeks 3–6 NAO predictive skill for weak
vortex events results primarily from stratospheric coupling to the troposphere, while enhanced skill for
strong vortex events can be attributed in part to lower boundary forcing related to ENSO. These results have
implications for forecast model development and improvement.

1. Introduction

Forecasting of North Atlantic Oscillation (NAO) variability on subseasonal‐to‐seasonal (S2S) and seasonal‐
to‐decadal (S2D) timescales has recently received much attention due to its potential to provide enormous
social‐economic benefits (Mariotti et al., 2020; Merryfield et al., 2020; Smith et al., 2019; White et al., 2017).
Winter climate over Europe and eastern North America is significantly affected by the variability of the NAO
(Hurrell, 1995, 1996; Hurrell & Deser, 2009). The temporal evolution of the NAO has been suggested to be
primarily a stochastic process with a fundamental timescale of ~10 days (Feldstein, 2000) implying limited
predictability beyond weather time scales (e.g., Johansson, 2007). Yet, at longer timescales, a fraction of
NAO variability has been shown to be forced by changes in sea‐surface temperature (SST) and sea ice
(e.g., Hoerling et al., 2004; Hurrell et al., 2004; Screen, 2017). These low frequency NAO variations, therefore,
are likely more than just statistical remnants of energetic high‐frequency atmospheric fluctuations and
could be predictable if they are driven by predictable changes in boundary forcing.

Recent forecast system assessments have suggested that there may be enhanced predictability of the NAO on
S2S timescales (Riddle et al., 2013; Scaife et al., 2014). Efforts have been made to understand the source of
this enhanced predictability (e.g., Brunet et al., 2015; Cassou, 2008; Newman & Sardeshmukh, 2008;
Scaife et al., 2014). Evidence suggests that stratospheric processes and associated variability are important
(Jia et al., 2017; Nie et al., 2019; O'Reilly et al., 2019; Scaife et al., 2016; Tripathi, Baldwin, et al., 2015;
Wang et al., 2017; Xiang et al., 2019), including the contribution of the stratospheric pathway associated
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with the El Niño‐Southern Oscillation (ENSO) phenomenon (Butler et al., 2016; Domeisen
et al., 2015, 2018).

Extreme stratospheric polar vortex states (i.e., weak and strong vortex events) are followed by anomalous
near‐surface NAO conditions (Baldwin & Dunkerton, 2001) implying enhanced NAO prediction skill could
occur as forecasts‐of‐opportunity contingent on initial stratospheric states (Albers & Newman, 2019). For
instance, Sigmond et al. (2013) demonstrated that the skill of NAO forecasts averaged over 15‐ to 60‐day per-
iods is substantially enhanced when forecasts are initialized at the onset time of weak stratospheric polar
vortex events. Tripathi, Charlton‐Perez, et al. (2015) found that initialization based on anomalous vortex
events improves the skill of NAO predictions up to week 4, which has also been supported by multiple
S2S model assessments (Domeisen et al., 2020b; WWRP/WCRP, 2018). Kolstad et al. (2020) revealed that
errors in subseasonal NAO forecasts can be traced to the state of the stratospheric polar vortex when the fore-
casts were initialized.

In these aforementioned studies, the role of the stratosphere is typically assessedby categorizing the individual
forecasts based on initial stratospheric polar vortex states. However, this method cannot rule out the possibi-
lity that enhancedNAOpredictive skillmay also partly come fromother sources, for instance, lower boundary
forcing. Separating different sources of predictability is difficult, especially when the sample size is small. By
comparing the skill in a subseasonal prediction systemwith its correspondinguninitializedAMIP simulations
forced with observed SST and sea ice conditions, the relative importance of atmospheric (e.g., extreme strato-
spheric vortex states) and oceanic boundary sources of NAO predictability can be identified.

In this study, we attribute boreal winter NAO predictive skill for lead times of 3–6 weeks to distinct physical
sources. Reforecasts using a coupled model are analyzed to quantify skill dependency on the initial strato-
spheric conditions. Parallel uninitialized simulations employing the same modeling system are analyzed
to identify potential predictors in lower boundary forcing.

2. Model Reforecasts and AMIP Simulations
2.1. Model Reforecast

The reforecasts are conducted with the Community Earth System Model Version 1 (CESM; Hurrell
et al., 2013) for 1999–2015. The daily output follows the protocol of the Subseasonal Experiment project
(SubX; Pegion et al., 2019). The forecasts start every Wednesday and run for 45 days. The atmospheric
initial conditions are based on ERA‐Interim reanalysis (Dee et al., 2011). The ocean and sea ice initial
conditions are utilized from a forced ocean‐sea‐ice simulation that employs adjusted Japanese 55‐year
reanalysis atmospheric state fields and fluxes (Tsujino et al., 2018) as surface boundary conditions.
Details can be found in the Supporting Information Text S1 and Richter et al. (2020).

The CESM reforecasts are composited of two 10‐member ensembles with the same initial conditions but 30
(default) and 46 vertical levels in its atmospheric component—Community Atmosphere Model version 5
(CAM5; Neale et al., 2012; Richter et al., 2015). Richter et al. (2020) compared these two CESM reforecasts
and found that improved representation of the stratosphere can improve the predictive skill of the strato-
sphere but does not materially change tropospheric NAO predictive skill. Therefore, we combine the two
10‐member ensembles to yield a 20‐member ensemble for detailed analysis. Our conclusions hold when
we analyze the 10‐member ensembles separately.

In addition, hindcasts with the National Centers for Environmental Prediction (NCEP) coupled forecast sys-
tem model version 2 (CFS; Saha et al., 2014) and European Centre for Medium‐Range Weather Forecasts
(ECMWF; Vitart, 2014) are compared to those using CESM. This includes a four‐member CFS reforecast
ensemble initialized every day for 1999–2010 and a 11‐member ECMWF reforecast ensemble initialized
twice per week for 1996–2015, both from the international S2S database (Vitart et al., 2012, 2017).
Recognizing that the models have somewhat different hindcast periods, all the findings presented here have
been recalculated using their common period of 1999–2010.

2.2. NAO Skill Evaluation

The predictive skill is evaluated by the anomaly correlation coefficient (ACC) that has been commonly used
in S2S forecasts (e.g., Tripathi, Charlton‐Perez, et al., 2015). Namely,
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ACC ¼ ∑T
t¼1 Xmod − Cmodð Þ Xobs − Cobsð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑T
t¼1 Xmod − Cmodð Þ2 ·∑T

t¼1 Xobs − Cmodð Þ2
q ;

where Xmod and Xobs represent the weekly or monthly values for model ensemble‐mean and reanalysis
(ERA‐Interim; Dee et al., 2011), respectively. Cmod is the lead‐time dependent model climatology and
has the same period of time as the reanalysis climatology Cobs. T is the number of events over which
the ACC is calculated.

In this study, we diagnose the NAO forecast skill of sea‐level pressure (SLP) based on initialization during
November–March for lead times of 3–6 weeks (days 15–42 average). Discrete weekly skill for lead times of
1–6 weeks is also diagnosed. Similar to other studies (e.g., Butler et al., 2016; Johansson, 2007), we conduct
Empirical Orthogonal Function (EOF) analysis for ERA‐Interim monthly (November–March) SLP anoma-
lies over the Atlantic sector (20°N‐80°N; 90°W‐40°E) and treat the leading EOF regression as the NAO pat-
tern for both observations and models. The NAO index is then calculated by projecting the daily SLP
anomaly from model and reanalysis data onto the leading EOF pattern and using it for ACC diagnostics.
To quantify the confidence interval in the predictive skill of the NAO, we apply a bootstrapping method
by resampling 1,000 times with replacement and obtaining the 5% and 95% of the ACC significance levels
(Mudelsee, 2010).

Initial state persistence as a simple baseline source for NAO skill is evaluated from the correlation of the
NAO anomaly relative to its week 0 value (day −3 to day 3 average), and the resulting monthly persistence
skill is compared to that from the initialized dynamical models. Also, to isolate the role of surface boundary
forcing, we utilize 50‐member atmosphere model simulations with CAM5 forced by observed greenhouse
gases, SST, and sea ice conditions (Hurrell et al., 2008). The ensemble‐mean anomaly for these uninitialized
AMIP simulations is obtained by removing the daily long‐term climatology and then calculating the ACC
against observations. Again, the analysis is of monthlymean variability, and the simulation skill is compared
to weeks 3–6 skill from initialized forecasts and from simple persistence.

To explore the role of the stratosphere in NAO predictability, we subsample the winter forecast into three
categories based on the initial stratospheric zonal‐mean zonal winds at 10 hPa and 60°N. Similar to
Tripathi, Charlton‐Perez, et al. (2015), we first calculate the probability density function (PDF) of the
1999–2015 10‐hPa 60°N November–March zonal‐mean zonal wind distribution. The weak (strong) strato-
spheric polar vortex events are defined for forecasts whose initial zonal wind at 10‐hPa 60°N is below 15%
of the PDF (3.55 m/s) or above 80% of the PDF (40.79 m/s) resulting in 60 weak and 62 strong vortex events.
Figure S1 shows the composite of standardized polar‐cap geopotential height and SLP anomalies for weak
and strong vortex events, indicating that the observed downward coupling of extreme polar vortex events
and their surface NAO features are both well captured in CESM. Neutral vortex events are defined for fore-
casts when the 10‐hPa 60°N zonal winds (in reanalysis) are between 15% and 80% of the PDF for lead times
of 1–5 days. Compared to the common definition based on initial winds, our method further excludes
extreme polar vortex events occurring in the first 5 days that the majority of the model ensemble members
are able to predict (Domeisen et al., 2020a; Richter et al., 2020). The predictive skill of persistence and unin-
itialized AMIP simulations can be evaluated based on the same stratospheric events as in the CESM
reforecasts.

3. Results
3.1. Winter NAO Predictive Skill

The Northern Hemisphere (NH) monthly SLP hindcast skill from weeks 3 to 6 in boreal winter
(November–March) for CESM (1999–2015), CFS (1999–2010), and ECMWF (1996–2015) models is
presented in Figure 1a. The common feature among the three reforecasts is overall greater skill in lower
latitudes than higher latitudes, with a secondary skill maximum centered over Greenland especially in
CESM and ECMWF forecasts. When averaged over NH extratropics (northward of 23.5°N), ECMWF
has the highest skill (0.36), followed by CESM (0.33) and CFS (0.26). In the Atlantic basin, high skill
regions over Greenland and near the Azores project onto the NAO centers of action, suggesting that this
leading mode of climate variability has particularly enhanced forecast skill (Johansson, 2007). CESM and
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ECMWF monthly SLP skill implies greater NAO predictability than indicated by CFS, a contrast among
these systems that is evident already by week 2 and persists until week 6 (see Figure S2). We also assess
the model performance using the spread‐error ratio (Weisheimer et al., 2011). We find a much better
spread‐to‐error ratio in CESM and ECMWF compared to CFS (Figure S3).

Some of the model differences in skill are a function of ensemble size rather than a fundamental model bias
that might plague a particular prediction system, and it has been shown that skill declines with diminishing
model ensemble size (e.g., Athanasiadis et al., 2020; Butler et al., 2016; Kumar & Hoerling, 1995; Smith
et al., 2020). To explore this further, we randomly select N ensembles (N from 1 to 20) from the CESM
reforecast and then conduct 1,000‐times bootstrapping to calculate the 5% and 95% statistical significance
level of the NAO skill. Figure 1b shows weeks 3–6 monthly NAO skill in CESM as a function of ensemble
size. In agreement with those earlier studies, the NAO skill approximately doubles (0.27 vs. 0.51) when
the ensemble size increases from 1 to 20, but it is close to saturation at 15 ensemble members (e.g., there
is a less than 0.01 increase from 15 to 20 members).

Thus, when accounting for the differences in ensemble size of the systems diagnosed herein, the lower NAO
skill in the smaller CFS ensemble is reconcilable with sampling alone; its skill overlaps with that of CESM
when the latter's ensemble is subsampled to match the CFS population. That said, the lower skill with the
CFS model might also be related to the not well‐represented connection between tropical Pacific SST and
NAO, poorly predicted stratospheric polar vortex variability and too weak stratosphere‐troposphere

Figure 1. (a) Sea‐level pressure weeks 3–6 predictive skill evaluated by anomaly correlation coefficient (ACC) during
November–March for CESM, CFS, and ECMWF reforecasts. Values on the left corner denote the skill averaged over
Northern hemisphere extratropics. Numbers in the brackets of each model show the sample size. Stippling indicates
where values are different from zero at the 95% significance level based on bootstrapping. (b) Weeks 3–6 North Atlantic
Oscillation (NAO) predictive skill as a function of ensemble size. Shading, blue and red error bars indicate
the 5% and 95% statistical significance levels by conducting bootstrapping for CESM, CFS and ECMWF reforecasts,
respectively.
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coupling (Miller & Wang, 2019). Evidence to support this argument for
degraded skill is presented in the next section where we demonstrate an
appreciable sensitivity of skill to initial stratospheric conditions overall.

As a prelude to a more detailed analysis of the attributable causes
(sources) for weeks 3–6 NAO prediction skill, the initialized prediction
skill of CESM is compared to that resulting from simple persistence and
that arising from lower boundary forcing alone with no recourse to the
initial weather state. Summarized in Figure S4, the monthly NAO skill
in CESM hindcasts (~0.5) is found to be considerably larger than in both
persistence forecasts (~0.3) and the simulation skill arising solely from
effects of prescribed surface lower boundary forcing (~0.05). It is interest-
ing to note from their NH distributions of SLP skill (Figure S4, left) that
the AMIP simulations have more than double the correlation skill of per-
sistence averaged over the NH overall. But persistence skill is quite high
over the two NAO centers of variability in the Atlantic basin, while
AMIP skill is virtually absent over the NAO's northern node. This overall
estimate of skill sources, while informative, obscures a considerable con-
ditionality of the skill by each source.

3.2. Sensitivity to the Stratospheric Initial States

To explore the role of initial stratospheric states on NAO prediction skill,
we subsample the CESMwinter reforecasts into weak, neutral, and strong
polar vortex events. Figure 2a shows the monthly time series of 10‐hPa
zonal winds averaged along 60°N, the extreme values of which are used
to identify strong (blue dots) and weak (red dots) vortex events during
1999–2015. The weekly NAO skill using this stratification is displayed in

Figure 2b. In agreement with earlier studies, the NAO skill is generally higher in weeks 3–6 when initialized
from extreme stratospheric polar vortex conditions compared to neutral states. Whereas NAO skill initia-
lized from neutral polar vortex states declines roughly exponentially, a comparatively sustained high skill
occurs when initialized from extreme polar vortex state with correlations above 0.5 through week 6 for weak
vortex initial conditions in particular. By week 6, this skill improvement relative to neutral states (0.15) is
appreciable and statistically significant, indicating that NAO skill is substantially enhanced when initialized
during weak vortex events, a result based on CESM that affirms prior findings based on other forecast sys-
tems (Domeisen et al., 2020b; Sigmond et al., 2013; Tripathi, Charlton‐Perez, et al., 2015). The NAO skill
for strong polar vortex events is also elevated compared to neutral vortex states especially after week 4.
However, the skill is not as high as for weak vortex events in weeks 5 and 6. This is likely due to a difference
between CESM and observed NAO life cycles during strong vortex events. In weeks 5–6 following strong vor-
tex events, the canonical positive NAO pattern is evident in CESM but not in observations (see Figure S1b).
We speculate that the lack of positive NAO skill in weeks 5–6 for these strong vortex cases might simply be
due to sampling rather than due to a fundamentally shorter time scale of stratosphere‐troposphere interac-
tions during strong versus weak vortex environments (c.f., Figure 2 of Reichler et al., 2012).

The CESM SLP and NAO skill averaged for forecast lead times of 3–6 weeks under weak, neutral, and strong
polar vortex events is presented in Figure 3 and further elucidates the sensitivity to the stratospheric initial
conditions. The higher NAO skill for weak vortex cases originates from a superior forecast performance over
the northern center of NAO variability. There the monthly SLP correlation skill is near 0.7 for weak vortex
conditions compared to slightly below 0.5 for the strong vortex cases. Interestingly, the NH average SLP skill
is higher for the strong vortex environments (0.41 vs. 0.34) and tends to also be higher in most locations,
though with the clear regional exception being over the far North Atlantic.

The NAO skill for persistence forecasts and AMIP simulations provides further insight on the attributable
causes for NAO prediction skill beyond 2 weeks (Figure 3b). The persistence skill for weak vortex events
is significantly lower than for strong vortex events, which is possibly related to the initial NAO state during
the onset of extreme polar vortex events (Domeisen et al., 2020). There is also statistically significant asym-
metry in AMIP simulation skill when binned according to reforecast polar vortex intensity. It is important to

Figure 2. (a) Observed November–March zonal‐mean zonal wind at 10 hPa
and 60°N and the weak (red), strong (blue) polar vortex CESM
reforecast cases. (b) Weekly NAO skill for the weak (red), strong (blue)
stratospheric polar vortex events and neutral polar vortex conditions (gray).
Error bars indicate the 5% and 95% statistical significance levels.
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note that the AMIP runs are constrained only by variability in surface boundary conditions and have no
explicit synchronicity with the actual temporal variability of the polar vortex. Thus, the results of
Figure 3a strongly suggest that boundary forcings themselves force the NAO variability for the strong events.

Considering these two factors in aggregate reveals an absence of skill during weak vortex states in both per-
sistence and AMIP and that the considerable monthly skill of CESM predictions is mostly due to the impor-
tance of the initial stratospheric state. By contrast, both persistence and lower boundary forcing contribute to
monthly NAO skill when the initial polar vortex is strong.

An explanation for the role of ocean forcing is provided by an analysis that stratifies the occurrences of polar
vortex events according to ENSO phase. The Niño3.4 index, based on Optimum Interpolation (OI) v2 SST
analyses (Reynolds et al., 2007), is shown in Figure 4a in relation to weak and strong polar vortex events.
The relationship is not linear and is complicated. For instance, many strong vortex events appear to happen
in either El Niño or La Niña years (e.g., 1999/2000, 2007/2008, 2009/2010, 2010/2011, & 2015/2016), though
such an association is less evident for weak and neutral events. These relationships are summarized via his-
tograms of Niño3.4 SST states stratified according to polar vortex intensity (Figure 4b). The spread of the dis-
tribution for strong vortex states is wide and highly non‐Gaussian (blue curve), especially compared to that
for weak polar vortex states (red curve). It suggests that the NAO predictive skill following strong vortex
events is influenced by ENSO, agreeing with the recent findings of Xiang et al. (2019) who identified
ENSO as the most predictable subseasonal mode and found that its influence in the North Atlantic resem-
bles the NAO pattern. However, further research is needed to determine why many strong vortex events
coincide with both El Niño and La Niña years.

The lower panel of Figure 4 provides a spatial view of the monthly SLP skill patterns related to effects of
initial stratospheric conditions and ENSO boundary conditions. Here, we subsample the winter cases into

Figure 3. (a) As in Figure 1a, but for the CESM weak, neutral, and strong vortex events. (b) As in (a), but for the NAO
skill in CESM, persistence and uninitialized AMIP simulations. Error bars indicate the 5% and 95% statistical
significance levels.
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extreme stratospheric polar vortex conditions (both weak and strong), ENSO cases (both El Niño and La
Niña, defined by Niño 3.4 index above/below +1/−1, respectively), and neutral stratosphere‐neutral
ENSO cases (Figure 4b). Note that the ENSO cases have been excluded from the composites of extreme
stratospheric vortex states, and extreme polar vortex events have been excluded from the ENSO cases.
Immediately apparent is that monthly SLP skill for neutral stratosphere and neutral ENSO cases is low
overall (Figure 4b middle panel) and has little amplitude in the NAO regional centers of variability. By
contrast, SLP skill is comparatively high for extreme states of ENSO (right panel) and for extreme states of
the polar vortex (left panel). While the initial atmospheric state is an especially effective skill source over
the northern node of the NAO, it is also clear that ENSO likewise projects onto centers of skill that align
with the NAO dipole. Moreover, when the AMIP simulation skill is subsampled for the same extreme
ENSO states, the resulting skill map (Figure S5) closely resembles that of Figure 4b, confirming an
ENSO‐attributable skill source for the NAO in initialized CESM1 (Figure S6). Overall, our conclusions
regarding forecast performance hold when analyses are repeated using a mean square error skill score
(see Supporting Information Text S2 and Figure S7).

4. Summary and Discussion

In this study, we explore sources of subseasonal predictive skill of the boreal winter NAO. By utilizing
ensembles of 45‐day reforecasts during 1999–2015 with a state‐of‐the‐art prediction system, in combination
with uninitialized AMIP simulations, we attribute NAO predictive skill for lead times of 3–6 weeks. We find
two principle sources of skill: upper and lower boundary constraints linked to the stratosphere and ENSO,
respectively.

Figure 4. (a) Niño 3.4 time series and the weak (red dots) and strong (blue dots) polar vortex events and the probability
density function of Niño 3.4 index for the weak (red), neutral (gray shading), and strong (blue) polar vortex events.
In (a), the daily Niño 3.4 index is smoothed by 31 days running mean. (b) As in Figure 3a, but for initial extreme
stratospheric polar vortex events (bottom left; combining weak and strong events), neutral stratosphere‐ENSO events
(bottom middle), and ENSO events.

10.1029/2020GL090451Geophysical Research Letters

SUN ET AL. 7 of 10



Specifically, we find that the winter NAO skill for forecast lead times out to 6 weeks is higher following
extreme stratospheric polar vortex conditions (weak and strong vortex events) compared to neutral states.
We further show that the enhanced NAO predictive skill for weak vortex events results primarily from stra-
tospheric downward coupling, while the enhanced skill for strong vortex events can be attributed, in part, to
lower boundary forcing associated with ENSO.

We also find that NAO prediction skill is appreciably reduced if the forecast ensemble size is too small. While
a similar result has been determined for seasonal and decadal prediction systems, it may become more
important for the subseasonal forecast due to compromise between ensemble size and initialization fre-
quency. Our finding suggests that given fixed computational resources, the ensemble size should be no less
than 10; otherwise, NAO predictive skill will be substantially lower than achievable levels.

Our findings come with a caveat that CESM and most other similar subseasonal forecast systems (e.g., S2S
Prediction Project and SubX) cover only the most recent 20–30 years. Since NAO predictability has been
found to vary at decadal and multidecadal timescale (Weisheimer et al., 2018), the degree to which our
results are specific to the period analyzed is an open question.

Our findings also have important implications for forecast system development and improvement.
Specifically, our results indicate that NAO boreal winter forecast skill depends on not only the representa-
tion of stratospheric processes in the forecast model, but also on the ENSO evolution during the model test-
ing period. Thus, for NAO predictive skill as benchmark for model improvement, the analysis of subseasonal
reforecasts in combination with AMIP simulations will provide insight as to whether NAO predictive skill
can be improved by focusing on better representation of stratospheric processes and related variability in
a specific prediction system or through better simulation of ENSO, if not both.

Data Availability Statement

The CESM reforecast data are available to the public via Columbia University's International Research
Institute for Climate and Society (IRI) library at http://iridl.ldeo.columbia.edu/SOURCES/.Models/.SubX/.
CESM/. The CAM5 simulations are available at PSL's Facility for Weather and Climate Assessments
(FACTS) website at https://www.esrl.noaa.gov/psl/repository/facts/. The CFS and ECMWF data are avail-
able at ECMWF's S2S portal https://apps.ecmwf.int/datasets/data/s2s/levtype=sfc/origin=ecmf/type=cf/.
OI SST v2 Niño3.4 index is downloaded from the KNMI climate explorer at https://climexp.knmi.nl/getin-
dices.cgi?WMO=NCEPData/nino34_daily&STATION=NINO3.4&TYPE=i&id=
someone@somewhere&NPERYEAR=366.
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